A Necessary and Sufficient Condition for Global Existence for a Degenerate Parabolic Boundary Value Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE Of A UNIQUE SOLUTION OF A DISCRETE BOUNDARY VALUE PROBLEM

A kth-order linear difference equation with constant coefficients subject to boundary conditions is considered. A necessary and sufficient condition for the existence of a unique solution for such a boundary value problem is established. The condition established answers a fundamental question for well-posedness and can be easily applied using a simple and computationally tractable algorithm th...

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Necessary and Sufficient Condition of Existence for the Quadrature Surfaces Free Boundary Problem

Performing the shape derivative (Sokolowski and Zolesio, 1992) and using the maximum principle, we show that the so-called Quadrature Surfaces free boundary problem QS ( f , k) ⎪⎪⎪⎨⎪⎪⎪⎩ −ΔuΩ = f in Ω uΩ = 0 on ∂Ω |∇uΩ| = k (constant) on ∂Ω. has a solution which contains strictly the support of f if and only if ∫

متن کامل

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

A necessary and sufficient condition for global existence for a quasilinear reaction-diffusion system

We show that the reaction-diffusion system ut = ∆φ(u) + f (v), vt = ∆ψ(v) + g(u), with homogeneous Neumann boundary conditions, has a positive global solution on Ω× [0,∞) if and only if ∫∞ds/ f (F−1(G(s)))=∞ (or, equivalently, ∫∞ds/g(G−1(F(s)))=∞), where F(s) = ∫ s 0 f (r)dr and G(s) = ∫ s 0 g(r)dr. The domain Ω ⊆ RN (N ≥ 1) is bounded with smooth boundary. The functions φ, ψ, f , and g are non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1998

ISSN: 0022-247X

DOI: 10.1006/jmaa.1997.5900